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Abstract. In this paper the revised Kajantie–Byckling approach and improved phase space sampling
techniques for the massive multi-particle final states are presented. The application of the developed
procedures to the processes representative for LHC physics indicates the possibility of a substantial
simplification of multi-particle phase space sampling while retaining a respectable weight variance reduction
and unweighing efficiencies in the event generation process.

1 Introduction

With the advent of the LHC era the need for precise predic-
tions (and subsequently detailed simulation) of many QCD
and electroweak processes has arisen. One of the necessary
components of an accomplished simulation tool is definitely
efficient phase space modeling of multi-particle final states.
While the light (massless) particles in the final states and
the relevant topologies can quite effectively be simulated
using general tools (e.g. RAMBO, SARGE, HAAG [3–5]),
further development might be needed for phase space sam-
pling where the massive final state particles are present.
While at LEP’s 200 GeV a massless approximation for the
final state particles was adequate, in most of the stud-
ied cases at LHC in contrast the massless approximation
becomes less suitable because of crossing the top quark
production barrier in conjunction with the possibility of
multi-quark final states and the shifting centre-of-mass en-
ergy in proton–proton collisions. Furthermore, in the LEP
era the number of (hard process) particles in the final
states of relevance only rarely rose above four and subse-
quently the number of possible final state topologies was
relatively modest. Typical processes of interest (signal) and
their backgrounds at LHC will involve several heavy quarks
and/or weak bosons in the intermediate states; thus the
number of particles in a typical process under study is
generally at least four. Furthermore, the number of Feyn-
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man diagrams contributing to a typical process involving
heavy quarks in the final state is mostly ranging from a
few to hundred(s) (and can steeply rise to many thousands
when massless quarks are added). Subsequently, this results
in varied particle topologies which prove to be a challenge
when trying to adequately describe themusing the available
statistical approaches and numerical methods. Important
steps have already been made in matrix element calcula-
tions (e.g. MadGraph [6]) and have so far surpassed the
corresponding development of phase space modeling and
sampling techniques.

The general objective in the simulation of physics pro-
cesses for the LHC environment is thus to improve the inte-
gration of the differential cross-section using Monte Carlo
sampling methods1. The sampling method used should aim
to minimise the variance of the integral as well as max-
imise the sampling efficiency given a certain number of
iterations and the construction of the sampling method
itself should aim to be sufficiently general and/or modu-
lar to be applicable to a wide range of processes. Let us
write down a (process) cross-section integral for LHC type
(hadron–hadron) collisions:

σ =
∫ ∑

a,b

fa(x1, Q
2)fb(x2, Q

2)
|Mn|2

(2π)3n−4(2ŝ)
dx1 dx2 dΦn,

(1)
where fa,b(x, Q2) represent the gluon or (anti) quark par-
ton density functions, |Mn|2 the squared n-particle matrix
element divided by the flux factor [(2π)3n−42ŝ], and dΦn

denotes the n-particle phase space differential. The quan-
tity ŝ = x1 x2 s is the effective centre-of-mass energy, and

1 For a nice discussion of this topic see e.g. [1, 2]
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the sum
∑

a,b runs in case of quark–antiquark incident
partons over all possible quark–antiquark combinations
(a, b = u, d, s, c, ū, d̄, s̄, c̄). In case of the gg initial state the
sum has only one term with a = b = g.

It is often convenient to re-write the differential cross-
section in the form

σ =
∫ ∑

a,b

x1fa(x1, Q
2) x2fb(x2, Q

2)
|Mn|2

(2π)3n−4(2ŝ2)

×dy dŝ dΦn, (2)

with the new (rapidity) variable given by y = 0.5 ln(x1/x2).
The n-body phase space differential dΦn and its integral Φn

depend only on ŝ and particle masses mi due to Lorentz in-
variance:

Φn(ŝ, m1, m2, . . . , mn) (3)

=
∫

dΦn(ŝ, m1, m2, . . . , mn)

=
∫

δ4

(
(pa + pb) −

n∑
i=1

pi

)
n∏

i=1

d4piδ(p2
i − m2

i )Θ(p0
i ),

with a and b denoting the incident particles and i running
over all outgoing particles i = 1, . . . , n. What one would
like to do is to split the n-body phase parameterised by
3n−4 essential (i.e. non-trivial) independent variables into
manageable subsets (modules) to be handled by techniques
which reduce the variance of the result and/or the sampling
efficiency (e.g. importance sampling [7] or adaptive integra-
tion like VEGAS [8] or FOAM [9]). Stating this in formal
terms, the above equation, (2), should be transformed into
an expression like

σ =


 n∏

i=1

s+
i∫

s−
i

dsi






m∏
j=1

t+j∫
t−
j

dtj




 l∏

k=1

Ω+
k∫

Ω−
k

dΩk


 |Jn|

×
∫ ∑

a,b

x1fa(x1, Q
2) x2fb(x2, Q

2)

× |Mn|2
(2π)3n−4(2ŝ2)

dy dŝ, (4)

where one integrates over Mandelstam type (Lorentz in-
variant) momenta transfers si, tj and space angles Ωk ≡
(cos ϑk, φk) within the kinematically allowed limits (3n−4
variables in total) with the term |Jn| denoting the Jacobian
of the transformation. If one would then decide to intro-
duce importance sampling functions in order to reduce the
peaking behavior of the integrand [7], the integrals would
take the form

s+
i∫

s−
i

dsi =

s+
i∫

s−
i

gi(si)
gi(si)

dsi, (5)

where the importance sampling function gi is the prob-
ability density function normalised in the integration re-
gion [s−

i , s+
i ]:

s+
i∫

s−
i

gi(si)dsi = 1, (6)

which exhibits a similar peaking behavior as the integrand.
Formally, one then inserts the identity

1 =

1∫
0

δ


ri −

si∫
s−

i

gi(si)dsi


dri (7)

into the integral and then derives the unitary sampling pre-
scription:

1∫
0

dri

s+
i∫

s−
i

δ


ri −

si∫
s−

i

gi(si)dsi


 gi(si)

gi(si)
dsi

=

1∫
0

dri

s+
i∫

s−
i

δ
(
si − G−1(ri)

) 1
gi(si)

dsi

=

1∫
0

dri

gi(G−1(ri))
, (8)

which formally means that the si values are sampled from
the interval according to the gi(si) distribution by using
the (pseudo-) random variable ri together with the gi(si)
cumulant G(si) =

∫ si

s−
i

gi(si)dsi with its inverse G−1. The
unitarity of the algorithm states that each trial (ri value)
produces a result (i.e. a corresponding si value distributed
according to gi(si)).

Performing such substitutions on all integration param-
eters would give as the cross-section expression

σ =
3n−4∏
i=1

1∫
0

dri
f(r1, r2 . . .)
g(r1, r2 . . .)

, (9)

where the integrand would (hopefully) have as low a varia-
tion as possible at least for a subset of contributingFeynman
diagrams2. To improve the sampling method further, the ri

(pseudo-) random variables can be sampled from adaptive
algorithms of the VEGAS type [8, 10].

A representative Feynman diagram describing a 2 → 6
process is shown in Fig. 1. As one can see, the process can be
split in several consecutive branchings; this approximation
is often used in matrix element (probability amplitude)
calculations. It seems rather obvious that any Feynman
diagram can be split in a series of horizontal and vertical

2 The “modularisation” can be performed for several topolo-
gies at the same time and multi-channel techniques can be ap-
plied.
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Fig. 1. A representative
Feynman diagram describing
a 2 → 6 process gg → tt̄ →
bb̄W+W − → bb̄�ν̄�q1q̄2 and
its decomposition into a set
of 2 → 2 t-channel and s-
channel sub-processes

branchings that one can denote as s-type and t-type (u-
type) using the analogy with the Mandelstam variables.
What one would like to do is thus to modularise the phase
space in the form of sequential s- and t-type splits.

The s-splitting of phase space was first examined in the
1950s by several authors [11–14] (and also independently
by Raubold and Lynch whose contribution was never pub-
lished). In itself the s-splitting is relatively easy to im-
plement and has as such been used in many instances of
Monte Carlo generation (e.g. FermiSV [15], Excalibur [16],
Tauola [17] etc.); the t-type branchings (often tagged as
multi-(peri)pheral topologies) have in contrast generally
been calculated and used only for specific cases (e.g. for
three or four particles in the final state [15, 16, 18]). As it
turns out, the problem of several massive particles in the
final state has already appeared more than 30 years ago
when several hadrons (e.g. pions) have been produced in
(comparatively low energy) nuclear interactions. At that
time Kajantie and Byckling [19] have derived the formulae
for simulating any sequence of s- and specifically t-type
branchings which, with some modifications, can also be
applied to the EW and QCD processes involving heavy
quarks and/or massive bosons at LHC.

In the following sections, Sects. 2 and 3, the revised
version of Kajantie–Byckling algorithm (KB) will be dis-
cussed and a formulation of the algorithm for the multi-
phase space integration will be presented. In Sect. 4 the
numerical results for some representative applications as
implemented in the AcerMC 2.0 Monte Carlo generator
will be presented.

2 Modified Kajantie–Byckling formalism

2.1 The s-type branching algorithms

The s-splits are the simplest method in the KB formalism.
For the sake of completeness one should start with the
definition of the two-body phase space integral (c.f. Fig. 2):

Φ2(s, m1, m2) (10)

p2 = s

pb

pa

p2

p1

Fig. 2. A diagram of a generic
2 → 2 s-channel process

=
∫

d4p1d4p2δ(p2
1 − m2

1)δ(p
2
2 − m2

2)δ
4(p − p1 − p2)

×Θ(p0
1)Θ(p0

2),

with the incoming momentum sum p = (pa + pb), p2 = s
and outgoing momenta p1,2, p

2
1,2 = m2

1,2. The phase space
integral is Lorentz invariant (as one can observe in the
above equation where it is written in a manifestly Lorentz
invariant form). Subsequently, due to Lorentz invariance,
the integral is necessarily a function of the Lorentz scalars
s, m1 and m2 only. The step function product Θ(p0

1)Θ(p0
2)

is the explicit requirement of the positiveness of the energy
terms in p1,2 while the delta functions represent the on-shell
conditions on p1,2 and the total momentum conservation.

The integral can be transformed into a more compact
form by integrating out the spurious variables; one thus
first integrates over d4p2 and chooses the centre-of-mass
system (CMS) as the integration system of reference with
p = (

√
s, 0, 0, 0) and then evaluates the integrals over p0

1
and E∗

1 :

Φ2(s, m1, m2)

=
∫

d4p1δ(p2
1 − m2

1)δ
(
(p − p1)2 − m2

2
)
Θ(p0

1)

=
∫

d3p∗
1

2E∗
1

δ(s + m2
1 − 2

√
sE∗

1 − m2
2)

=
1

4
√

s

∫
p1

∗dE∗
1dΩ∗

1δ

(
E∗

1 − s + m2
1 − m2

2

2
√

s

)

=
p∗
1(s, m1, m2)

4
√

s

∫
dΩ∗

1 , (11)

with the stars explicitly denoting the values in the centre-
of-mass system. The first integration simply sets p0

1 =√
(p∗

1)2 + m2
1 = E∗

1 and the second integral leads to the
well known relations for the energy

E∗
1 =

s + m2
1 − m2

2

2
√

s
, E∗

2 =
√

s − E∗
1 =

s + m2
2 − m2

1

2
√

s
,

(12)
and momenta sizes

p∗
1 = |p∗

1| =

√
λ(s, m2

1, m
2
2)

2
√

s
, p∗

2 = p∗
1 (13)

of two-particle production. The λ(s, m2
1, m

2
2) denotes the

Lorentz invariant function

λ(s, m2
1, m

2
2) = (s − (m1 + m2)2)(s − (m1 − m2)2) (14)
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and thus explicitly contains the phase space cutoff, i.e. the
requirement that the available CMS energy

√
s should be

bigger than the mass sum
√

s ≥ (m1 + m2). Note that the
integration was so far done only over the spurious parame-
ters, leaving the polar and azimuthal angle of the p1 particle
as the two independent parameters dΩ∗ = d cos θ∗dϕ∗. The
integral becomes trivial to sample in case the outgoing par-
ticles can be approximated as massless (the “boost” factor
lambda transforms to unity). As already claimed, the latter
approximation is however often unjustified when studying
processes representative for the LHC environment.

Kajantie and Byckling [19] introduced the recursion
and splitting relations for the n-particle phase space Φn(s)
given by (3). The recursion relation can be derived by
defining the momentum sum,

ki =
i∑

j=1

pj = (k0
i ,ki); M2

i = k2
i . (15)

Subsequently one can interpret p = kn and s = M2
n

from (3). One continues by introducing the identities

1 =
∫

dM2
n−1δ(k

2
n−1 − M2

n−1)Θ(k0
n−1) (16)

and
1 =

∫
d4kn−1δ

4(p − kn−1 − pn) (17)

into the integral of (3); separating out the arguments con-
taining kn−1 and pn terms one obtains

Φn(M2
n, m1, m2, . . . , mn) (18)

=
∫

dM2
n−1

{∫
d4kn−1d4pn

×δ(k2
n−1 − M2

n−1)δ(p
2
n − m2

n)δ4(p − kn−1 − pn)

× Θ(k0
n−1)Θ(p0

n)
}

Φn−1(M2
n−1, m1, m2, . . . , mn−1),

where the remaining pi terms form the (n − 1)-particle
phase space integral Φn−1(M2

n−1, m1, m2, . . . , mn−1) and
the terms in curly brackets give a two-particle phase space
term (c.f. (11)):

Φn(M2
n, m1, m2, . . . , mn)

=
∫

dM2
n−1

×Φ2(M2
n, Mn−1, mn)Φn−1(M2

n−1, m1, m2, . . . , mn−1)

=
∫

dM2
n−1

p∗
n

4Mn
Φn−1(M2

n−1, m1, m2, . . . , mn−1)

=

(Mn−mn)2∫
(∑n−1

i=1 mi)2

dM2
n−1

√
λ(M2

n, M2
n−1, m

2
n)

8M2
n

×
∫

dΩ∗
nΦn−1(M2

n−1, m1, m2, . . . , mn−1), (19)

kn kn−1 kn−2 ki+1 ki ki−1 k2pb

pa

p1

pn pn−1 pn−2 pi+1 pi p2

Fig. 3. The diagrammatic representation of consecutive s-splits

with the integration limits on M2
n−1 following from its

definition in (15). It has to be emphasised that the angles in
dΩ∗

i are each time calculated in the centre-of-mass system
of ki with the invariant mass Mi. The resulting recursion
relation is clearly of advantage when describing cascade
decays of particles kn → kn−1pn → kn−2, pn, pn−1 → . . .;
it also proves that the n-particle phase space of (3) can be
reduced into a sequence of two-particle phase space terms,
as shown in Fig. 3.

It can further prove of advantage to loosen up the split-
ting terms of (16) and (17) so that instead of summing to
n − 1 one groups an arbitrary set of � particles:

1 =
∫

dM2
l δ(k2

l − M2
l )Θ(k0

l ), (20)

1 =
∫

d4klδ
4


p − kl −

n∑
j=l+1

pj


 , (21)

which, when repeating the procedure in the recursion re-
lation of (19), results in the expression

Φn(M2
n, m1, m2, . . . , mn) (22)

=

(Ml+1−ml+1)2∫
(∑l

i=1 mi)2

dM2
l Φn−l+1(M2

n, Ml, ml+1, . . . , mn)

×Φl(M2
l , m1, m2, . . . , ml),

and thus effectively splits the phase space into two subsets,
equivalent to introducing an intermediate (virtual) particle
with momentum kl.

The number of splitting relations and the number of
particles in each group as given in (21) can be chosen
in any possible sequence, thus meaning that the grouping
sequence is arbitrary and can be adjusted to fit the topology
in question.3

At this point some modifications were introduced into
the algorithm in order to adapt it to the specifics of the pro-
cesses expected at the LHC. Kajantie and Byckling namely
assumed that the generation sequence would be “down”
the cascade (i.e. by sampling first a Mn value, then Mn−1
value etc. as is indeed most often done in Monte Carlo gen-
erators). This might however not be optimal in the LHC

3 Suggestions of [19] on how to pick random number sequences
will not be used since one might like to couple this method with
an adaptive algorithm to improve the sampling efficiencies.
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environment since the available centre-of-mass energy for
the hard process (ŝ) can vary in a wide range of values
(c.f. (2)) and has to be sampled from a distribution itself.
The shape of the distribution function for ŝ is expected to
behave as a convolution of thepeakingbehavior of all partic-
ipating invariant masses times the parton density functions
(c.f. (2)); it subsequently seems to be more natural (and
efficient) first to sample the individual propagator peaks
and then their subsequent convolutions. Furthermore, by
generating the invariant masses “up” the cascade (i.e. first
M2, M3 . . .Mn and finally ŝ) the kinematic limits on the
branchings occur in a more efficient way (bound on the

√
λ

values; see (14) and (24)), which is very convenient since in
the LHC environment no stringent generation cuts should
be made on the inherently non-measurable ŝ as it cannot
be accounted for by an analogous cut in a physics analysis.

A necessary modification of the algorithm would thus
be to reverse the generation steps by starting with the last
pair(s) of particles. In terms of integration (i.e. sampling)
limits this translates into changing the limits of (19):

Φn(M2
n, m1, m2, . . . , mn)

=

(Mn−mn)2∫
(∑n−1

i=1 mi)2

dM2
n−1

√
λ(M2

n, M2
n−1, m

2
n)

8M2
n

∫
dΩ∗

n

×
(Mn−1−mn−1)2∫
(∑n−2

i=1 mi)2

dM2
n−2

√
λ(M2

n−1, M
2
n−2, m

2
n−1)

8M2
n−1

∫
dΩ∗

n−1

× . . .

(Mi−mi)2∫
(∑i−1

j=1 mj)2

dM2
i−1

√
λ(M2

i , M2
i−1, m

2
i )

8M2
i

∫
dΩ∗

i . . .

×
(M3−m3)2∫

(m1+m2)2

dM2
2

√
λ(M2

3 , M2
2 , m2

3)
8M2

3

∫
dΩ∗

3

×
√

λ(M2
2 , m2

1, m
2
2)

8M2
2

∫
dΩ∗

2 , (23)

which accommodates the mass generation sequence kn →
kn−1 + pn → . . . (i.e. first sample M2

n−1, then Mn−2,
etc.), into

Φn(M2
n, m1, m2, . . . , mn)

=

(Mn−mn)2∫
(Mn−2+mn−1)2

dM2
n−1

√
λ(M2

n, M2
n−1, m

2
n)

8M2
n

∫
dΩ∗

n

×
(Mn−mn−mn−1)2∫
(Mn−3+mn−2)2

dM2
n−2

√
λ(M2

n−1, M
2
n−2, m

2
n−1)

8M2
n−1

×
∫

dΩ∗
n−1

× . . .

(Mn−∑n
j=i+1 mj)2∫

(Mi−1+mi)2

dM2
i−1

√
λ(M2

i , M2
i−1, m

2
i )

8M2
i

×
∫

dΩ∗
i . . .

×
(Mn−∑n

j=3 mj)2∫
(m1+m2)2

dM2
2

√
λ(M2

3 , M2
2 , m2

3)
8M2

3

∫
dΩ∗

3

×
√

λ(M2
2 , m2

1, m
2
2)

8M2
2

∫
dΩ∗

2 , (24)

where one first samples the mass M2, M3, . . . , Mn−1 in the
appropriate limits.

In some topologies symmetric cases of mass genera-
tion can appear (as shown in Fig. 1) where the integration
sequence is ambivalent (e.g. in Fig. 1 the ambivalence is
which top quark invariant mass to generate first) and af-
ter a choice is made (since one of the two cases in the
symmetric pair has to take precedence) the procedure it-
self remains not entirely symmetric. Detailed studies have
shown that it proves useful to include all permutations of
such ambiguous sequences into the MC algorithm in order
to “symmetrise” the solution and thus make it easier to
process by further additions (e.g. adaptive algorithms).

2.2 The t-type branching algorithms

The t-splits are a specialty of the KB formalism due to
the advanced calculation of the limits on the (massive) t-
variable. The formalism can be introduced by observing
that in case of pa +pb → p1 +p2 scattering the momentum
transfer is characterised by the (Mandelstam) variable t =
(p1 − pa)2 (c.f. Fig. 4). It is thus sensible to replace the
dΩ∗

1 = d cos θ∗
1dϕ∗

1 integration in the two-body phase space
integral of (11) with integration over the t-variable. Writing
the definition of t in the centre-of-mass system one gets

t = q2 = (pa − p1)2

= m2
a + m2

1 − 2E∗
aE∗

1 + 2p∗
ap∗

1 cos θ∗
1 , (25)

and hence
dt = 2p∗

ap∗
1d cos θ∗ (26)

Using the latter substitution together with (12) and (13
and the analogue for pa,

p∗
a =

√
λ(s, m2

a, m2
b)

2
√

s
, (27)

q2 = t

pb

pa

p2

p1

Fig. 4. A diagram of a generic
2 → 2 t-channel process
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Fig. 5. The diagrammatic rep-
resentation of the method ap-
plied in translating the multi-
(peri)pheral splits into a 2 → 2
t-channel configuration

one obtains in place of (11)

Φ2(s, m1, m2) =
p∗
1(s, m1, m2)

4
√

s

∫
dΩ∗

1

=
1

8
√

sp∗
a

∫
dt dϕ∗

=
1

4
√

λ(s, m2
a, m2

b)

t+∫
t−

dt

2π∫
0

dϕ∗. (28)

With the integration variable change the integration do-
main changes from [−1, 1] for d cos θ∗ to [t−, t+] for the
dt integration. The t± limits are obtained by inserting the
cos θ∗ limits into (25):

t± = m2
a + m2

1 − 2E∗
aE∗

1 ∓ 2p∗
ap∗

1, (29)

or in the Lorentz invariant form (c.f. (12) and (13)):

t± = m2
a + m2

1 − (s + m2
a − m2

b)(s + m2
1 − m2

2)
2s

∓
√

λ(s, m2
a, m2

b)λ(s, m2
1, m

2
2)

2s
. (30)

As a step towards generalisation one has to note that the
kinematic limits t± can also be derived from the basic four-
particle kinematic function G(x, y, z, u, v, w) [19,20], where
the function G can be expressed as a Cayley determinant:

G(x, y, z, u, v, w) = − 1
2

∣∣∣∣∣∣∣∣∣∣∣




0 1 1 1 1
1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0




∣∣∣∣∣∣∣∣∣∣∣
. (31)

The kinematic limits on t are in this case given by the con-
dition

G(s, t, m2
2, m

2
a, m2

b , m
2
1) ≤ 0, (32)

and it should be noted that the above condition gives either
t± limits given a fixed value of s or equivalently s± limits
given a fixed t value.

In search of a recursion relation involving t-variables
one can note that in (19) the angle in cos θ∗

n is equivalent

to the scattering angle in the centre-of-mass system of the
reaction pa + pb → kn−1 + pn and thus given by

tn−1 = (pa − kn−1)2 (33)

= m2
a + M2

n−1 − 2E∗
ak0∗

n−1 + 2p∗
ak∗

n−1 cos θ∗
n−1,

with the t±n−1 limits expressed by

G(M2
n, tn−1, m

2
n, m2

a, m2
b , M

2
n−1) ≤ 0, (34)

and the p∗
a given by (27). In order to produce a more general

picture it can further be deduced that the next angle in the
recursion θ∗

n−1, is the scattering angle of the subsequent
process pa + (pb − pn) → kn−2 + pn−1 in the centre-of-
mass system of kn−1; the (pb − pn) = qn−1 is in this case
considered as a virtual incoming particle with momentum
qn−1 (c.f. Fig. 5).

It immediately follows that for a general process pa +
qi+1 → ki + pi+1 with

qi = pb −
n∑

j=i+1

pj = pa − ki; q2
i = ti; q2

n = tn = m2
b ,

(35)
a general expression for ti becomes in the centre-of-mass
frame of ki+1

ti = (pa − ki)2 (36)

= m2
a + M2

i − 2E∗(i+1)
a k

0∗(i+1)
i + 2p∗(i+1)

a k
∗(i+1)
i cos θ∗

i ,

where the momenta in centre-of-mass frame of ki+1, de-
noted with the superscript ∗(i + 1), are given by

k
∗(i+1)
i =

√
λ(M2

i+1, M
2
i , m2

i+1)

2Mi+1
, (37)

p∗(i+1)
a =

√
λ(M2

i+1, m
2
a, ti+1)

2Mi+1
, (38)

and the corresponding energies k
0∗(i+1)
i and E

∗(i+1)
a can

simply be obtained by using the analogues of (12) and (13)
or the usual Einstein mass–energy relations directly. The
corresponding t±i limits are given by

G(M2
i+1, ti, m

2
i+1, m

2
a, ti+1, M

2
i ) ≤ 0, (39)
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and the recursion relation of (19) becomes

Φn(M2
n, m1, m2, . . . , mn) (40)

=

(Mn−mn)2∫
(∑n−1

i=1 mi)2

dM2
n−1

4
√

λ(M2
n, m2

a, tn)

×
2π∫
0

dϕ∗
n

t+n−1∫
t−
n−1

dtn−1 Φn−1(M2
n−1, m1, m2, . . . , mn−1),

As already argued the resulting set of (si = M2
i , ti)

can again be sampled in any direction with respect to
the cascade by applying the appropriate change in the
integration limits (c.f. (19) and 24). The recommended
approach (i.e. the introducedmodification of the algorithm)
is again to first sample the invariant masses in the reverse
cascade direction (i.e. in the sequence M2, M3, . . . , Mn) and
then the ti values within the limits calculated from (34)
down the cascade (i.e. in the order of tn−1, tn−2, . . . , t1).

To sum up, it has been shown that using the Kajantie–
Byckling formalism the phase space for any topology can
be split in a set of s-type and t-type 2 → 2 branching steps
(modules) given by the recursive formulae (24) and (40).

3 Propagator sampling

A well known theoretical issue is that one can expect the
most prominent peaks in the differential cross-section of a
specific process in the phase space regions of high propaga-
tor values in the corresponding probability density. Conse-
quently, in the scope of complementing the modular struc-
ture of the derived Kajantie–Byckling based phase space
sampling, new approaches were also developed concern-
ing the numerical sampling methods of the relevant kine-
matic quantities.

In order to get a small variance in the Monte Carlo
procedure one would thus like to include the appropriate
peaking dependence of the relevant momentum transfers q2

in the importance sampling function. It however turns out
that since the momenta transfers q participate also in the
propagator numerators (typically in pµqµ/q2) and since in
the process of interest one mostly finds several Feynman
diagrams contributing to the final probability density, thus
causing interferences, it is very difficult or even impossible
to estimate the exact power of the momenta transfers in
the sampling functions for different propagator peaks. In
other words, the probability density dependence on the
momentum transfer q2 can in general be approximated with
the dependence 1/(q2)ν where the best value of ν must be
determined separately (on a process by process basis).

In view of the latter, general formulae have been devel-
oped for sampling the x−ν shape [15,21]: Given a pseudo-
random number r ∈ [0, 1] and limits x ∈ [x−, x+] the value
x distributed as x−ν is obtained from the formulae in (8) as

x =
[
x−ν+1

− · (1 − r) + x−ν+1
− · r

]− 1
ν+1 ; ν 	= 1; (41)

x =
xr

+

xr−1
−

; ν = 1. (42)

Using the analogous (unitary) approach a recipe for res-
onant (Breit–Wigner) propagator contributions of the type

BW(s) =
1

(s − M2)2 + M2Γ 2 , (43)

with s ∈ [s−, s+] and a pseudo-random number r ∈ [0, 1],
is available by the prescription

s = M2 + MΓ · tan [(u+ − u−) · r + u−] , (44)

u± = arctan
(

s± − M2

MΓ

)
. (45)

Following similar arguments as for the non-resonant
propagators one can surmise that the best sampling func-
tion for resonant propagators could in general be a Breit–
Wigner shape modified by a factor sν , ν ∈ [0, 1]. In [10] it
was found that a shape

BW(s) =
s

(s − M2)2 + M2Γ 2 (46)

works quite well for a set of processes, and a corresponding
sampling recipe was developed. In addition, studies in [22]
show that a resonant

√
s× Breit–Wigner shape,

BW(s) =
√

s

(s − M2)2 + M2Γ 2 , (47)

should be expected in a range of decay processes. Detailed
studies have shown that it is in general better to introduce
a sν , ν ∈ [0, 1] dependence even if it over-compensates
the high mass tails of the corresponding differential cross-
section distribution since this provides an overall reduction
of themaximalweight fluctuations in theMonteCarlo event
generation procedure.

3.1 The inclusion of mass effects
in propagator sampling

Studies have shown that the t−ν → x−ν approximation
works quite well for t-channel type propagators since the
phase space suppression factor

√
λ participates in the de-

nominator, as shown in (40), and thus contributes only to
the x−ν slope; the sampling of massive propagators can still
be achieved by simple variable substitution (t − m2)−ν →
x−ν . On the contrary, while the x−ν approximation still
works reasonably well when describing the s-channel type
propagators involving particles with high virtuality and/or
decay products with low masses, it can be shown that this
is not necessarily the case in the LHC environment, where
the presence of massive decay products can significantly
affect the invariant mass distributions. As it can be seen
in Fig. 6 the shape of the propagator dependence can be
strongly suppressed by the phase space

√
λ (boost) factor

at low values; thus the sampling function approximation
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Fig. 6. A few representative invariant mass distribution comparisons between the (normalised) sampling functions and the
normalised differential cross-section as obtained with the AcerMC 2.0 Monte Carlo generator. Left: The invariant mass of the bb̄
pair in the process ud̄ → W+g∗ → l+νlbb̄. Center: The invariant mass of the Wbb̄ system (equivalently the hard centre-of-mass
energy

√
ŝ) for the same process. Right: The invariant mass of the ��̄ pair in the process gg → Z0/γ∗bb̄ → ��̄bb̄. All the

distributions were obtained using the prescriptions of this paper without the adaptive algorithms also used in the AcerMC 2.0
Monte Carlo generator. As one can see the approximations used seem to work quite well

for non-resonant propagators could be approximated with
something like

fNR(s) =

√
λ(s, m2

a, m2
b)

s
· 1

sν
=

√
λ(s, m2

a, m2
b)

sν+1 (48)

and similarly

fR(s) =

√
λ(s, m2

a, m2
b)

s
·

√
s

(s − M2)2 + M2Γ 2

=

√
λ(s, m2

a, m2
b)√

s · ((s − M2)2 + M2Γ 2)
(49)

for resonant propagators.
It turns out that the two functions cannot be sampled by

the well known unitary algorithms (i.e. the biggest collec-
tion of recipes [21] yielded no results); already the integral
values of the functions yield complicated expressions which
cannot be easily calculated, let alone inverted analytically.
The solution was to code numerical algorithms to calculate
the integrals (i.e. cumulants) explicitly.

After the integrals are calculated, their inverse and the
subsequent sampling value can again be obtained numer-
ically. Namely, resorting to the original definition of the
unitarity sampling recipe in (8), by replacing thenormalised
gi(x) with

gi(x) → f(x)
x+∫
x−

f(x) dx

, (50)

which in turn gives

x∫
x−

f(x) dx = r ·
x+∫

x−

f(x) dx, (51)

where f(x) is the non-negative function onewants to sample
from, [x−, x+] is the range of values of the parameter x

we want to sample and r a pseudo-random number r ∈
[0, 1]. As already stated (c.f. (8)), in the case when the
integral of the function f(x) is an analytic function, and
F (x) =

∫ x

x−
f(x) dx and has a known inverse F−1(x), one

can construct explicit unitary prescriptions by

x = F−1 (r · [F (x+) − F (x−)] + F (x−)) , (52)

as given for two particular cases in (42) and (45).
In the cases the integral cannot be inverted, the pre-

scription of (51) can directly be transformed into a zero-
finding request; thus, since both the integral and the first
derivative (i.e. the sampling function and its cumulant)
are known, the Newton–Rhapson method is chosen as the
optimal one for root finding:

g(x) =




x∫
x−

f(x)dx − r ·
x+∫

x−

f(x)dx


 = 0, (53)

g′(x) =
d
dx




x∫
x−

f(x)dx − r ·
x+∫

x−

f(x)dx




= f(x). (54)

With a sensible choice of starting points the procedure
generally takes on the order of ten cycles until finding
the root with adequate numerical precision. The overall
generation speed is still deemed quite reasonable.

The integration of the phase space suppressed resonant
propagator of (49) yields a rather non-trivial expression:

s∫
(ma+mb)2

fR(s) ds

=

s∫
(ma+mb)2

√
λ(s, m2

a, m2
b) ds√

s · ((s − M2)2 + M2Γ 2)
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=

s∫
a

√
(s − a)(s − b) ds√

s · ((s − M2)2 + M2Γ 2)

=
1√−b Γ M2

× −2 ia b Γ

(Γ 2 + M2)

×
{
F
[
i arcsinh

(√−b√
a

)
,
a

b

]

−F
[
i arcsinh

(√−b√
s

)
,
a

b

]
+(iΓ + M) (a + i(Γ + iM) M) (b + i(Γ + iM) M)

×Π
[

M (−iΓ + M)
b

, i arcsinh
(√−b√

a

)
,
a

b

]
+(Γ + iM) (b + (−iΓ − M) M) (ia + (Γ − iM) M)

×Π
[

M (iΓ + M)
b

, i arcsinh
(√−b√

a

)
,
a

b

]
−(iΓ + M) (a + i(Γ + iM) M) (b + i(Γ + iM) M)

×Π
[

M (−iΓ + M)
b

, i arcsinh
(√−b√

s

)
,
a

b

]
−(Γ + iM) (b + (−iΓ − M) M) (ia + (Γ − iM) M)

×Π
[

M (iΓ + M)
b

, i arcsinh
(√−b√

s

)
,
a

b

]}
, (55)

where the variables a, b stand for a = (ma + mb)2 and
b = (ma − mb)2 and the functions F[ϕ, k] and Π[ϕ, k, n]
are the Legendre incomplete elliptic integrals of the second
and third kindwith complex arguments. In order to perform
the calculations the latter functions had to be coded from
scratch since they were not found in any (publicly available)
computer libraries or code repositories. The prescriptions
for calculating them were found in [23]; the results were
checked against the values given by MathematicaTM. In the
special case ma = mb the above expression simplifies to

s∫
(2ma)2

fR(s) ds

=

s∫
(2ma)2

√
λ(s, m2

a, m2
a) ds√

s · ((s − M2)2 + M2Γ 2)

=

s∫
a

√
(s − a) ds

· ((s − M2)2 + M2Γ 2)

=
1

Γ M
√

a + (−iΓ − M) M

×
{

(ia + (Γ − iM) M)

× arctan

( √−a + z√
a + (−iΓ − M) M

)

−i
√

a + (−iΓ − M) M
√

a + i (Γ + iM) M

× arctan

( √−a + z√
a + i (Γ + iM) M

)}
. (56)

The result of integrating the phase space suppressed non-
resonant propagator (48) yields a similarly non-trivial re-
sult:

s∫
(ma+mb)2

fNR(s) ds

=

s∫
(ma+mb)2

√
λ(s, m2

a, m2
b) ds

sν+1

=
1

2
√

1 − s
a ν

×
{

− 2
√

(a − s) (b − s)

×F1
[−ν, − ( 1

2

)
, − ( 1

2

)
, 1 − ν, s

a , s
b

]
sν

√
1 − s

b

+
√

π
√

(−a + b) (a − s)

× Γ [1 − ν] F
[−ν, − ( 1

2

)
, 3

2 − ν, a
b

]
aν

√
1 − a

b Γ
[ 3

2 − ν
]

}
, (57)

where the function F [α, β, γ, x] is the Gauss hypergeomet-
ric function and F1[α, β, β′, γ, x, y] is the two-parameter
(Appell) hypergeometric function [24]. Both functions can
be calculated by using the prescriptions in [24]; it however
turns out that the calculation of the F1[α, β, β′, γ, x, y] to a
certain (high) precision is almost two times slower than the
explicit numerical calculation of the integral to the same
precision. Subsequently the numerical evaluation of the
Gauss hypergeometric function F [α, β, γ, x] was retained
since it participates in the ma = mb simplification and the
calculation of the integral was done by using a 50-point
Gauss–Legendre quadrature with

√
s weight function; the

weights were calculated by [25]. The implementation of the
(Appell) hypergeometric function calculation was used as
a cross-check to confirm the correct implementation and
precision of the numerical method.

As already mentioned, the above integral again simpli-
fies for ma = mb:

s∫
(2ma)2

fNR(s) ds =

s∫
(2ma)2

√
λ(s, m2

a, m2
b) ds

sν+1

=

s∫
a

√
(s − a) ds

sν+ 1
2

(58)

=
2
3

a1−ν s
3
2 F

[
3
2

, ν +
1
2

,
5
2

, −s

]
,
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and the Gauss hypergeometric function F [α, β, γ, x] is in
this case calculated by the methods described in [24] with
some improvements analogous to the ones described e.g.
in [26].

4 Application of the method

The phase space “modularisation” described in this paper
has successfully been applied for phase space generation in
the AcerMC 2.0 Monte Carlo generator [27]. The program
uses the multi-channel phase space generation where each
channel corresponds to an expected phase space topology
as derived from the participating Feynman diagrams. In
AcerMC 2.0 this information was obtained from the mod-
ified MadGraph [6] program which also supplied the prob-
ability amplitudes for the implemented processes. Each
channel topology was in turn constructed from the t-type
and s-type modules and sampling functions described in
this paper together with some additional importance sam-
pling techniques for space angles and rapidity distributions
described in detail elsewhere [10,15,16,28]. The unknown
slope parameters (denoted ν in the text, c.f. (48)) of the
invariant mass sampling functions for non-resonant propa-
gators were obtained by short training runs of the program
on a process by process basis.

As a further step the multi-channel self-optimisation
procedure was implemented in order to minimise the vari-
ance of the event weights further [7]. A few representative
invariant mass distribution comparisons between the im-
plemented sampling functions and the actual differential
distributions are shown in Fig. 6.

As a further estimate of the success of the methods a
comparison of the variance in the differential cross-section
determination are presented in Table 1 for AcerMC 2.0 [27]
and an earlier version,AcerMC1.4 [10], which uses the stan-
dard phase space sampling techniques [10,15,16,29,30]. The
comparison is done for a few representative processes. It
has to be stressed that in the AcerMC 1.x versions the
phase space was constructed by hand on a process by pro-
cess basis meticulously tuned while in the new AcerMC 2.0
the “automated” approach sufficed. A further improvement
was the inclusion of the ac-VEGAS algorithm [10] which
reduces the maximal event weights in order to improve
the unweighing efficiencies; the comparison between the
unweighing efficiencies reached in the standard and new
approaches (AcerMC versions 1.4 and 2.0) is also given in
Table 1. The event weight variance Vσ presented in Table 1

is for N measurements of the weights wi defined as

Vσ =

∑N
i=1 w2

i

N −
(∑N

i=1 wi

N

)2

N − 1
. (59)

Likewise, the customary definition is used for the unweigh-
ing efficiency estimate:

ε =

∑N
i=1 wi

N

wmax
, (60)

where wmax is the maximal event weight obtained in N
trials. It also might be relevant to stress that since the
average weight is the total cross-section estimate for the
considered process σ 
 ∑N

i=1 wi/N the only quantity that
is allowed to change in order to improve the unweighing
efficiency is the maximal weight wmax.

The improved and automated phase space handling
provided the means to include the 2 → 6 processes like e.g.
gg → tt̄ → bb̄W+W− → bb̄�ν̄�q1q̄2 (c.f. Fig. 1) which would
with the very complicated phase space topologies prove to
be too much work to be handled manually. The studies
show that the overall unweighing efficiency which can be
reached in the 2 → 6 processes by using the recommended
phase space structuring is on the order of 10 percent. As
an example, process cross-sections and variances with their
uncertainties and unweighing efficiencies as obtained for
two sample 2 → 6 processes implemented in the AcerMC
2.0 Monte Carlo generator are presented in Table 2 and
the corresponding weight distributions are shown in Fig. 7.
The two processes share the same initial and final state
but include different subsets of Feynman diagrams; the
gg → tt̄ → bb̄W+W− → bb̄�ν̄��̄ν� process includes only
the three diagrams containing the tt̄ intermediate state,
while in the second process gg → bb̄W+W− → bb̄�ν̄��̄ν� all
31 diagrams involving the bb̄W+W− intermediate state are
included. Subsequently, two sampling channels were con-
structed to describe the topologies in the first and 13 sam-
pling channels in the second process of the two described
above. The results show that the sampling procedure scales
quite efficiently with the increase in the number of Feyn-
man diagrams and topologies. Detailed studies show that
with inclusion of the new propagator modeling described in
this paper the sampling of angular distributions becomes
a new restraining factor in achieving optimal weight vari-
ances and unweighing efficiencies which might therefore be
worth investigating further.

Table 1. The process cross-section variances with their uncertainties and unweighing efficiencies obtained
for a few implemented processes basing on the old and new phase space sampling techniques as implemented
in AcerMC 1.4 and AcerMC 2.0 respectively. The variances are given for a sequence of 105 weighted events
(i.e. algorithm iterations) obtained by using the procedure described in the text. The unweighing efficiencies
were estimated from samples containing ∼ 106 weighted events

Process AcerMC 2.0 Vσ [pb2] AcerMC 1.4 Vσ [pb2] AcerMC 2.0 ε AcerMC 1.4 ε

gg → Z/(→ ��)bb̄ 0.129 · 10−2 ± 0.52 · 10−5 0.159 · 10−2 ± 0.61 · 10−5 37% 33%
qq̄ → W (→ �ν)bb̄ 0.390 · 10−2 ± 0.15 · 10−4 0.533 · 10−2 ± 0.18 · 10−4 35% 33%
gg → tt̄bb̄ 0.522 · 10−4 ± 0.19 · 10−6 0.972 · 10−4 ± 0.44 · 10−6 36% 20%
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Table 2. The process cross-sections and variances with their uncertainties
and unweighing efficiencies as obtained for two sample 2 → 6 processes
implemented in AcerMC 2.0 Monte Carlo generator. The results show that
the sampling procedure scales quite efficiently with the increase in the number
of Feynman diagrams and sampling channels. Detailed studies show that with
inclusion of the new propagator sampling the angular distributions become the
restraining factor. The cross-sections and variances are given for a sequence
of 2 · 105 weighted events (i.e. algorithm iterations) obtained by using the
procedure described in the text. The unweighing efficiencies were estimated
from samples containing ∼ 106 weighted events

AcerMC 2.0 Process σ [pb] Vσ [pb2] ε

gg → tt̄ → bb̄W+W − → bb̄�ν̄��̄ν�

(3 Feyn. diag./2 sampl. chan.) 4.49 0.80 · 10−4 ± 0.39 · 10−6 14%

gg → bb̄W+W − → bb̄�ν̄��̄ν�

(31 Feyn. diag./13 sampl. chan.) 4.77 0.77 · 10−4 ± 0.29 · 10−5 17%

Wt × 2 • 106 [ pb]

(1
/N

) 
dN

/d
(W

t)

gg → tt
_
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_
 → 4f bb

_
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_
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Fig. 7. The weight distribution of the sampled events for the
gg → tt̄ → bb̄W+W − → bb̄�ν̄��̄ν� (light gray histogram) and
gg → bb̄W+W − → bb̄�ν̄��̄ν� (black histogram) processes as
obtained with the AcerMC 2.0 Monte Carlo generator. One can
observe the well defined weight range for the two processes; as
it turns out the weight distribution is even marginally better
for the (more complex) second process, possibly because the
higher number of sampling channels manage to cover the event
topologies in phase space to a better extent

5 Conclusion

In this paper the revised Kajantie–Byckling approach and
some improved phase space sampling techniques for the
massive multi-particle final states were presented. In order
to adapt the procedure to the LHC environment the modi-
fications necessary for reversing the sampling order were in-
troduced and new invariant mass sampling methods, which
attempt to describe the propagator dependence of the prob-
ability density together with the phase space suppression
due to the presence of massive particles, were developed.

The developed procedures have been implemented in
the AcerMC 2.0 Monte Carlo generator [27]. Based on the

encouraging evidence provided by the AcerMC 2.0 imple-
mentation of the approach it seems reasonable to argue
that the methods presented in this paper should substan-
tially simplify and automate the phase space integration
(sampling) techniques while retaining a respectable weight
variance reduction and unweighing efficiencies provided by
the most advanced phase space sampling techniques de-
veloped so far [10,15,16,29,30]. Furthermore, the authors
believe that these techniques could easily be combined with
algorithms of the type Sarge [4] or HAAG [5] to provide
successful sampling of the (∼ massless) final state particles
as e.g. final state gluon radiation.
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